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Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel biomarker of LDL clearance and a therapeutic target of
cardiovascular disease. We examined the effects of aerobic exercise training in modulating PCSK9 abundance and hepatic sterol
regulation in high-fat-fed C57BL/6 mice. Mice (𝑛 = 8) were assigned to a low-fat (LF), high-fat (HF), or an HF with exercise
(HF+EX) group for 8 weeks. The HF+EX group was progressively trained 5 days/week on a motorized treadmill. The HF+EX
group was protected against body weight (BW) gain and diet-induced dyslipidemia compared with the HF group. The HF+EX
group demonstrated an increase in hepatic PCSK9 mRNA (1.9-fold of HF control, 𝑃 < 0.05) and a reduction in plasma PCSK9
(14%) compared with the HF group. Compared with HF mice, HF+EX mice demonstrated reduced hepatic cholesterol (14%) and
increased (𝑃 < 0.05) nuclear SREBP2 protein (1.8-fold of HF group) and LDLr mRNA (1.4-fold of HF group). Plasma PCSK9
concentrations correlated positively with plasma non-HDL-C (𝑃 = 0.01, 𝑟 = 0.84). Results suggest that treadmill exercise reduces
non-HDL cholesterol and differentially modulates hepatic and blood PCSK9 abundance in HF-fed C57BL/6 mice.

1. Introduction

Aerobic exercise is consistently associated with favorable
shifts in blood triglycerides and HDL-C; however, data from
intervention studies [1, 2] and numerous meta-analyses [3–
6] also support a less well-characterized and variable LDL-C
lowering response to exercise training. Beyond LDL-C low-
ering, lipoprotein-profiling studies also suggest that high-
intensity exercise training may modulate LDL particle num-
ber and size distribution patterns [7, 8]. Using a kinetic
tracer approach, Ficker et al. recently shed light on the
potential mechanism of LDL-C lowering in response to
exercise training. They reported increased fractional LDL
clearance in both hypercholesterolemic and normolipidemic
individuals following a 4-month exercise program consisting
of stretching, cycling, and strength training exercises [9].
The degree of LDL-C lowering following exercise is likely
dependent on multiple subject-specific factors (baseline lipid
status, occurrence and extent of weight loss) and type and

rigor of exercise training including schedule, frequency, and
volume [3, 10].

Blood cholesterol concentrations are maintained within
narrow range through complex and coordinated pathways
that direct enterohepatic cholesterol absorption and synthe-
sis, intravascular VLDL remodeling, and plasma LDL clear-
ance through the LDL receptor (LDLr) by receptor-mediated
endocytosis [11]. Transcriptional regulation of hepatic LDLr
expression is classically regulated through sterol regulatory
element binding protein 2 (SREBP2), signaled through cel-
lular cholesterol [12]. Understanding of posttranscriptional
LDLr regulation was significantly bolstered by the more
recent discovery of proprotein convertase subtilisin/kexin
type 9 (PCSK9) protein, a serine endoprotease that promotes
degradation of the LDLr protein [13]. Function/distribution
studies suggest that PCKS9 is synthesized and secreted pre-
dominately by the liver and initiates extracellular degradation
of membrane-incorporated LDLr following direct binding
[14], although intracellular mechanismsmay also be involved
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[15]. PCSK9 shares a common transcriptional regulatory
pathway with the LDLr through SREBP2 [16]. As PCSK9 is
inversely related to LDL particle clearance, it is considered
a potentially important biomarker of cardiovascular disease
risk, intimately reflective of hepatic SREBP2 expression and
LDLr activity [17].

Given the current understanding of the specific role of
PCSK9 in regulating hepatic LDLr uptake and the recent
report of increased fractional LDL clearance in response
to exercise [9], there are emerging questions regarding the
potential role of exercise training as a modulator of PCSK9
metabolism. Although plasma PCSK9 concentrations have
been examined in response to diet [18–21] and pharma-
ceutical [22, 23] lipid-lowering therapies, modulation of
PCSK9 metabolism has yet to be examined as a potential
contributing mechanism underscoring LDL-C reductions
and hepatic LDL clearance in response to exercise.Therefore,
the objective of this study was to examine the effects of aer-
obic exercise training in modulating PCSK9 abundance and
hepatic sterol regulation in a high-fat-fed C57BL/6 mouse
compared with untrained control animals. We hypothesized
that aerobic exercise training would limit weight gain and
reduce circulating PCSK9 and LDL-C, while consuming a
high-fat diet.

2. Experimental Approach

The animals used in this experiment were cared for in
accordance with the guidelines established by the Institu-
tional Animal Care and Use Committee. All procedures were
reviewed and approved by the Animal Care Committee at the
University at Buffalo.

2.1. Animals, Treadmill Exercise, and Diets. Two-month old
lean male C57BL/6 mice (Taconic Farms, Inc.) were ran-
domly allocated to one of three groups for 8 weeks (Table 1):
(1) a low-fat-fed group (LF, 10% fat, Research Diets, Inc.; diet
no. D12492i); a high-fat-fed group (HF, 60% fat, Research
Diets, Inc.; diet no. D12450Bi); or an HF-fed exercised group
(HF + EX) that were trained 5 days/week on a treadmill
(26m/min; Columbus Instruments, Inc.; Exer 3/6). On the
first day, animals were placed in the treadmill chamber
and allowed to acclimate for 20min. Each day, animals
were given a 3–5min warm-up period with slow walking
speeds. Training began with a pace of 10m/min, a moderate
walk-jog pace, for ∼20min. As mice became increasingly
familiar with the treadmill, the velocity and duration were
gradually increased until mice were able to run between 25–
28m/min for 45min. 25–28m/min is estimated to be 75–80%
of maximal oxygen consumption for mice [24]. Generally,
both pace and time were increased in an attempt to achieve
a ∼10% increase per week. Short bursts of compressed air
were used to train the mice to continue their pace up to 45
minutes in duration. Mice were constantly monitored while
they were on the treadmill. If a mouse required more than 4
bursts of compressed air to continue running within aminute
period, the treadmill speed was reduced by ∼10%. If a mouse
appeared to be injured during the training, it was removed

Table 1: Formulation of low-fat and high-fat diets fed for C57BL/6
mice.

Ingredient1 Diets
Low fat2 High fat3

Casein 19.0 25.8
Corn starch 29.9 0.0
Maltodextrin 3.3 16.2
Sucrose 33.2 8.9
Cellulose 4.7 6.5
Soybean oil 2.4 3.2
Lard 1.9 31.7
Other 5.7 7.8
Total 100 100
Macronutrient profile (% energy)

Protein 20 20
Carbohydrate 70 20
Fat 10 60

1% composition; 2Research Diets, Inc.; diet no. D12492i; 3Research diets,
Inc.; Diet no. D12450Bi.

from the treadmill immediately. The HF + EX mice achieved
a final grade of 5%, running 45min/day at 26m/min by the
forty-third session. Body weight and food consumption were
monitored weekly throughout the study.

2.2. Sample Collection. All blood and tissue samples were
collected two days after the final exercise session to limit acute
diet and hormonal influence. Twelve-hour fasting plasma
samples were collected by cardiac puncture into heparinized
tubes and separated from whole blood by centrifugation
at 1,000×g for 10min. Following the two-month treatment
period, livers were removed under 3% isoflurane anesthesia
and immediately frozen in liquid nitrogen for subsequent
analysis. Following tissue removal, the mice were euthanized
by transecting the heart and diaphragm while under isoflu-
rane. All tissues were stored at −80∘C until further processing
and analyses.

2.3. Blood Lipid and PCSK9 Analysis. Plasma total choles-
terol, non-HDL-C, and HDL-C were measured by enzymatic
kit (BioAssay Systems, EHDL-100) according to the man-
ufacturers’ instructions. Commercial ELISA kits were used
to assess direct LDL-C (Kamiya Biomedical, KT-21019) and
PCSK9 (R&D Systems, MPC900) concentrations.

2.4. Hepatic Cholesterol Analysis. Hepatic cholesterol was
extracted and analyzed according to our previously published
procedures [25, 26]. Approximately 500mg of pulverized
liver was spiked with 𝛼-cholestane as internal standard and
saponified in freshly prepared KOH-methanol at 100∘C for
1 h. The nonsaponifiable sterol fraction was extracted with
petroleum diethyl ether and dried under N

2
gas. Sterol

fractions were analyzed using a Shimadzu GC-17A gas
chromatograph fitted with a flame ionisation detector. A
SAC-5 capillary column (30m×0.25mm×0.25mm, Supelco,
Bellefonte, CA, USA) was used for cholesterol analyses.
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Table 2: Body weight, liver weight, average feed intake, and total distance run in C57BL/6 mice assigned to a low-fat (LF), high-fat (HF), or
a high-fat/exercise (HF + EX) group for 8 weeks.

Parameter LF1 HF1 HF + EX1

Body weight (g) 38.8 ± 1.3 49.8 ± 0.9
∗

41.1 ± 1.0

Liver weight (mg) 160.1 ± 15.5 249.5 ± 25.4
∗

136.3 ± 7.3
∗

Average feed intake (g/mouse/day) 2.5 ± 0.1 2.3 ± 0.1 2.2 ± 0.0

Total distance run (km) N/A N/A 39.4 ± 0.1

1LF: low fat; HF: high fat; HF + EX: high fat + exercise. Values are mean ± SE, 𝑛 = 8; ∗denotes a significant difference from LF group (𝑃 < 0.05).

2.5. Immunoblot Analysis of Hepatic Regulatory Proteins.
Nuclear and cytoplasmic enriched extracts for immunoblot
analyses of SREBP1c (Novus Biologicals, NB600-582),
SREBP2 (Abcam, ab30682), PCSK9 (Abcam, ab31762), and
𝛽-actin (Cell Signaling, 8H10D10) were prepared according
to our previously published procedures [27]. Briefly, 200mg
of frozen, pulverized liver was homogenized in 10 volumes
of CHAPS-containing buffer (40mM HEPES (pH 7.5),
120mM NaCl, 1mM EDTA, 10mM pyrophosphate, 10mM
𝛽-glycerophosphate, 40mM NaF, 1.5mM sodium vanadate,
0.3% CHAPS, 0.1mM PMSF, 1mM benzamidine, and
1mM DTT). Supernatant collected following centrifugation
at 1,000×g for 3min at 4∘C contained the cytoplasmic
fraction. The pellet was washed three times with CHAPS
buffer, centrifuged at 1,000×g for 3min at 4∘C, and then
resuspended in 50 𝜇L of lysis buffer and 8.3 𝜇L of 5M NaCl
to lyse the nuclei. The mixture was rotated at 4∘C for 1 h
and then centrifuged at 12,578×g for 15min at 4∘C. The
supernatant contained the soluble nuclear fraction.

Hepatic crude membrane for immunoblot analysis of
LDLr (Novus Biologicals, NB110-57162)was prepared accord-
ing to previous reported procedures [28]. Briefly, 200mg of
pulverized, frozen liver was homogenized for 2minwith 1mL
of ice-cold homogenization buffer (10mMTris-HCl, 250mM
sucrose, and 2𝜇g/mL of PMSF; pH 7.5). The homogenate
was then centrifuged at 1,000×g for 10min at 4∘C to pel-
let undisrupted cells and nuclei. The collected supernatant
was then centrifuged at 100,000×g for 1 hour at 4∘C. The
resulting pellet (containing the crude membrane fraction)
was resuspended in 500𝜇L of resuspension buffer (80mM
NaCl, 2mMofCaCl

2
, 50mMTris-HCl, 1%Triton-X-100, and

2𝜇g/mL of PMSF; pH 7.5) and stored at −80∘C for future
analysis. Immunoblots were prepared as previously described
[29]. Nuclear and cytoplasmic proteins were normalized to
𝛽-actin. All blots were quantified using ImageJ (National
Institutes of Health, Bethesda, MD, USA).

2.6. Hepatic RNA Preparation and Real-Time RT-PCR. Total
RNA was isolated from whole liver tissue using TRI-
zol reagent (Ambion, AM9738). RNA concentration and
integrity were determined with spectrophotometry (260 nm)
and agarose gel electrophoresis, respectively. RNA prepara-
tion and real-time RT-PCR were conducted using a one-step
QuantiTect SYBR Green RT-PCR kit (Qiagen, 204154) on a
Biorad MyiQ real-time PCR system according to previously
established protocols [29]. Gene expression was analyzed
using the 2(-delta delta Ct) method [30]. Sequences of sense

and antisense primers for target and housekeeping geneswere
based on previously published sequences for PCSK9 [31],
LDLr [32], and 𝛽-actin [33].

2.7. Statistical Analyses. Whole-body growth and blood lipid
responses between LF, HF and HF + EX groups were
compared using Dunnett’s test. Comparisons between HF,
andHF+EXgroupswere conducted using a paired t-test.The
association between plasma PCSK9 and non-HDL choles-
terol was assessedwith Pearson’s productmoment correlation
coefficients. Data were analyzed with SPSS 16 for Mac (SPSS
Inc, Chicago, IL, USA). Data are presented as mean ± SEM.
All results are the means from 8 animals unless otherwise
stated. Differences were considered significant at 𝑃 ≤ 0.05.

3. Results

3.1. Body Weight and Food Intake. Mice that consumed an
HF diet increased body weight (BW) gain (𝑃 < 0.05) when
compared with the LF or the HF + EX groups, expressed as
endpoint BW (Table 2), BW over time (Figure 1(a)), and as a
percent of absolute BW gain over time (Figure 1(b)). Changes
in BW were independent of feed intake as no difference (𝑃 >
0.05) was observed between the LF, HF, and HF + EX groups
(Table 2). The HF group also showed increased liver weight
gain (𝑃 < 0.05) when compared to the LF and the HF + EX
groups (Table 2).

3.2. Lipid Response. Although HF feeding increased (𝑃 <
0.05) blood total, non-HDL, and LDL-C (25, 70, and 24%,
resp.) compared with the LF-fed animals, exercise training
normalized HF-diet induced dyslipidemia to LF-control lev-
els (Figure 2(a)). Exercise training (HF + EX) also reduced
(𝑃 < 0.05) hepatic total cholesterol concentration (14%)
compared with the LF group with no difference (𝑃 > 0.05)
observed between the LF and HF animals (Figure 2(b)). The
LF feeding group was included to establish effects of high-fat
feeding on body weight and blood and tissue lipid responses
and as such was not included in the mechanistic gene and
protein expression analysis.

3.3. Gene andProtein Expression. Comparedwith theHF ani-
mals, the HF + EX group demonstrated increased (𝑃 < 0.05)
hepatic PCSK9 mRNA expression (1.9-fold of HF control)
with no change observed (𝑃 > 0.05) in PCSK9 protein abun-
dance (Figures 3(a) and 3(b)).TheHF+ EX animals exhibited
a 31% reduction (𝑃 < 0.05) in plasma PCSK9 concentrations
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Figure 1: Time course (a) and % change (normalized to LF absolute weight change for duration of study) (b) of body weight gain in C57BL/6
mice assigned to a low-fat (LF), high-fat (HF), or a high-fat/exercise (HF + EX) group for 8 weeks. Values are mean ± SE, 𝑛 = 8; ∗ denotes a
significant difference from LF group (𝑃 < 0.05).
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Figure 2: Blood lipid (mmol/L) and hepatic cholesterol (mg/g tissue) response in C57BL/6 mice assigned to a low-fat (LF), high-fat (HF),
or a high-fat/exercise (HF + EX) group for 8 weeks. (a) Blood lipids including total cholesterol; non-HDL-C, LDL-C, and HDL-C (mmol/L);
and (b) hepatic cholesterol (𝜇g/g tissue). Values are mean ± SE, 𝑛 = 8; ∗ denotes a significant difference from LF (𝑃 < 0.05); # denotes a
difference from LF (𝑃 = 0.07).

compared with the HF group (Figure 3(c)). Plasma PCSK9
correlated positively with plasma LDL-C (𝑃 = 0.01, 𝑟 =
0.82) and non-HDL-C (𝑃 = 0.01, 𝑟 = 0.84, Figure 3(d)).
Although LDLr mRNA expression was increased (𝑃 < 0.05,
1.4-fold of HF control) in the HF + EX group compared
with the HF animals (Figure 4(a)), we observed no change
(𝑃 > 0.05) in LDLr protein abundance in hepatic total tissue
or membrane extracts between trained and untrained ani-
mals (Figures 4(b), and 4(c)).

SREBP1c protein abundance (cytosolic and nuclear) did
not differ between the HF and HF + EX groups (Figure 5(a));
however, the HF + EX group demonstrated an increase in
nuclear SREBP2 protein abundance (𝑃 < 0.05, 1.8-fold of HF
control) compared with the HF animals (Figure 5(b)).

4. Discussion

Findings from this study suggest that exercise training
protects against diet-induced dyslipidemia and differentially
modulates the hepatic expression and circulating concen-
trations of PCSK9. HF + EX animals exhibited an increase
(𝑃 < 0.05) in hepatic PCSK9 mRNA expression (1.9 fold
of HF control) but a reduction in circulating plasma PCSK9
concentration (−31%) compared with the HF-fed untrained
group. Exercise training also reduced (𝑃 < 0.05) hepatic
cholesterol concentration (14%) and increased the expression
of LDLr mRNA (1.4-fold of HF control) and nuclear SREBP2
protein (1.8-fold of HF control).

Our results support previous reports of reductions in
plasma cholesterol (total, non-HDL, and/or LDL-C) in
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Figure 3: PCSK9 response in C57BL/6 mice assigned to a high-fat (HF) or a high-fat/exercise (HF + EX) group for 8 weeks. (a) Hepatic
PCSK9mRNA expression; (b) hepatic PCSK9 protein abundance; (c) plasma PCSK9 (ng/mL); and (d) Pearson’s product-moment correlation
(𝑟) between plasma PCSK9 and non-HDL cholesterol concentrations. All expression data are normalized to 𝛽-actin and expressed relative to
the HF group; values are mean ± SE, 𝑛 = 8; ∗ denotes a significant difference (𝑃 < 0.05). Representative PCSK9 protein expression blots were
cropped from the same membrane.

response to aerobic exercise training in a variety of rodent
models including LDLr−/− [34–37], db/db [38], MC4R−/−
mice [39], and male Wistar rats [40]. Alternatively, exercise
training failed to increase HDL-C concentrations in our
C57BL/6 mouse model, an effect, that is, most often associ-
ated with aerobic exercise training in humans [41] but has
been shown to be quite variable in rodents [40, 42–44]. This
nonresponse of HDL-C is likely model specific as C57BL/6
mice carry the majority (∼70%) of plasma cholesterol in
the HDL fraction and exhibit modified HDL metabolism

characterized by an absence of cholesterol-ester transfer
protein and a resistance to diet-induced atherosclerosis [45].
Differences in HDLmetabolism in wild-type mice have been
suggested to mask the potential protective effects of exercise
on HDL concentration [46].

To our knowledge, this is the first study to demonstrate
a reduction in plasma PCSK9 concentration in response to
exercise training. HF + EX mice also exhibited a coordinate
upregulation of hepatic PCSK9 and LDLr mRNA (Figures
3(a) and 4(a), resp.), likely the result of a reduction in hepatic
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Figure 4: Hepatic LDLr expression in C57BL/6 mice assigned to a high-fat (HF) or a high-fat/exercise (HF + EX) group for 8 weeks. (a)
LDLr mRNA expression; (b) hepatic total tissue LDLr protein abundance; (c) hepatic membrane-bound LDLr protein abundance; and (d)
representative immunoblots. All data are normalized to 𝛽-actin and expressed relative to theHF group; values aremean ± SE, 𝑛 = 8; ∗ denotes
a significant difference (𝑃 < 0.05). Representative LDLr protein expression blots were cropped from the same membrane.

cholesterol (Figure 2(b)) and subsequent induction of nuclear
SREBP2 protein abundance (Figure 5(b)). In response to
reduced cellular cholesterol levels, both PCSK9 and the LDLr
are transcriptionally upregulated following SREBP2 cleav-
age at the endoplasmic reticulum and subsequent nuclear
translocation [16, 31]. Although only a limited amount of
work has examined hepatic cholesterolmetabolism in trained
animals, previous studies support our observed reduction
in hepatic cholesterol [34] and increased LDLr transcription
[47, 48] in exercise-trained C57BL/6 mice. Exercise has been
shown to increase SREBP2mRNAexpression in skeletalmus-
cle [49], but we are not aware of any study examining hepatic
SREBP2 expression in response to an exercise intervention.

The reduction in plasma PCSK9 was positively corre-
lated with concurrent reductions in plasma LDL-C and
non-HDL-C (Figure 3(d)). This correlation may suggest
that the reduction in LDL-C in the exercised animals is
associated with a lower LDLr turnover and enhanced LDL-
C clearance. However, given the recent report from Kosenko
et al. suggesting that circulating PCSK9 directly binds to
LDL plasma particles, it is equally likely that our observed
reductions in PCSK9 are merely reflective of lower LDL

in the exercise-trained animals [50]. This may also explain
our observed differential response between liver and plasma
PCSK9 protein abundance in the exercised animals. Even
though LDLr mRNA was elevated in response to exercise
training, we failed to detect any difference in hepatic LDLr
protein abundance in whole tissue or membrane extracts
between trained and untrained animals. Although this find-
ing is unexpected, the action of PCSK9 on LDLr expression
and activity in extrahepatic tissues cannot be ruled out as con-
tributing to the observed cholesterol reductions in the exer-
cised animals [51]. Furthermore, we did not examine hepatic
VLDL receptor expression, an additional target of PCSK9 that
regulates plasma non-HDL cholesterol concentration [52].

Though the precise molecular mechanism(s) underlying
exercised-induced modulation of PCSK9 may not beclear,
our data suggests that the reduction in blood PCSK9 involves
a posttranscriptional and/or translational event(s), given that
no change in hepatic PCSK9 protein was observed between
the HF and HF + EX groups. While the intramolecular
processing events that govern the maturation, secretion, and
eventual proteolytic inactivation of PCSK9 have not been
fully elucidated, it is clear that nutritional and hormonal
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Figure 5: Hepatic SREBP1c and SREBP2 protein abundance in C57BL/6 mice assigned to a high-fat (HF) or a high-fat/exercise (HF + EX)
group for 8 weeks. (a) Cytosolic and nuclear SREBP1c abundance. (b) Cytosolic and nuclear SREBP2 abundance. All data are normalized to
𝛽-actin and expressed relative to the HF group; values are mean ± SE, 𝑛 = 8; ∗ denotes a significant difference (𝑃 < 0.05). Representative
SREBP protein expression blots were cropped from the same membrane.

signals tightly regulate hepatic expression and plasma con-
centrations [31, 53]. In this regard, it is interesting to speculate
that the protective effects of exercise against weight gain in
the present study were related to the observed reduction in
PCSK9 concentrations. Resistin, an adipose tissue-derived
adipokine, that is, increased in obese rodents, has recently
been shown to inhibit hepatic LDL clearance by increasing
PCSK9 expression [54]. As weight loss through exercise
intervention reduces circulating resistin concentrations [55,
56], reductions in fat mass and adipose-derived resistin
secretion may underlie the observed reduction in PCSK9
concentration.

This study has several limitations. First, it is not known
whether the reduced plasma PCSK9 in the HF + EX mice
was a cause or a consequence of changes in plasma LDL-C.
Without the benefit of a PCSK9-deficient mouse, our results
cannot demonstrate a direct link between PCSK9 and LDL-C
reductions in response to exercise. Second, themature PCSK9
protein is composed of a prodomain, a catalytic domain that
binds to the EGF-A domain of the LDLr and a C-terminal
domain that interacts with cell-surface proteins. Previous
work suggests that PCSK9 activity is regulated by specific
autocatalytic processing events within the endoplasmic retic-
ulum and is inactivated following cleavage by furin, another

protein convertase [14]. The commercial PCSK9 antibody
used in these experiments was specific to the mature form of
PCSK9; hence, we were not able to examine potential changes
in pro-PCSK9 abundance in response to exercise training.
Also, it is not clear if the total PCSK9mass abundance in liver
and blood is reflective of its activity.

5. Conclusions

In summary, our results suggest that exercise training reduces
blood non-HDL cholesterol and PCSK9 concentrations and
enhances the hepatic mRNA expression of SREBP2, LDLr,
and PCSK9. Additional mechanistic studies are required to
directly link exercise-induced lipid lowering with reduced
PCSK9 activity.
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